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Let + be a finite positive Borel measure whose support is a compact subset K of
the real line and let I be the convex hull of K. Let r denote a rational function with
real coefficients whose poles lie in C"I and r(�)=0. We consider multipoint
rational interpolants of the function

f (z)=| d+(x)
z&x

+r(z),

where some poles are fixed and others are left free. We show that if the interpolation
points and the fixed poles are chosen conveniently then the sequence of multipoint
rational approximants converges geometrically to f in the chordal metric on compact
subsets of C� "I. � 2001 Academic Press

1. INTRODUCTION
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be a function which is holomorphic on a neighbourhood of the point
z=�. For each given nonnegative integer n there are polynomials pn and
qn of degree at most n such that qn �0 and

(qn f &pn)(z)=O(1�zn+1), z � �.

The ratio pn �qn of any two such polynomials defines a unique rational
function ?n which is called the n th (diagonal) Pade� approximant of f. It is
also possible to define the function ?n as the rational function of order at
the most n which has maximal order of contact (within the class of all such
functions) with the function f at the point z=�. Unlike Taylor polyno-
mials, the study of the convergence of the sequence of Pade� approximants
to f encounters serious difficulties. For instance, there exist entire functions
whose sequence of Pade� approximants diverges at every point of the complex
plane (see, for details, [16]). One of the first results of general character on
the convergence of such approximants was obtained by A. A. Markov (see
[12], Chapter 3, Theorem 6.1):

Let + be a finite positive Borel measure whose support, denoted by S(+),
is a compact subset of the real line R. The so-called Markov function is the
function +̂(z) defined by

+̂(z)=|
d+(x)
z&x

, z # C� "S(+).

Let I be the convex hull of S(+). Then, the sequence [?n]n # N of Pade�
approximants of +̂ converges uniformly to +̂ inside (on compact subsets of)
the domain C� "I.

This classical theorem admits several generalizations. It is possible to
construct rational approximants interpolating the Markov function along a
table of points. In this way, multipoint Pade� approximants are obtained
and the corresponding Markov theorem for this class of interpolants may
be found in [9]. Since the set of singular points of the Markov function is
contained in the support of the measure + we can take advantage of this
fact fixing all or part of the poles of the approximant precisely on the set
S(+). These approximants are commonly called in recent years Pade� -type
approximants, and Markov-type results involving them have been proved
(cf. [6], see also [1] and [3]). Finally, both types of approximation may
be combined to give multipoint Pade� -type approximants (see definitions
below). In this setting we can mention references [4] and [5].

A related problem was posed by A. A. Gonchar in [6]. Let us consider
the function

f (z)=|
d+(x)
z&x

+r(z),
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where r is a rational function whose poles lie in C"I and r(�)=0. Now, f
is a meromorphic function on C"I; the poles of f and their order are
unknown and should be found by means of the approximants so, rational
functions with fixed poles no longer work and it is necessary to use
approximants with free or partially free poles. In [6] Gonchar proved the
convergence of the sequence of Pade� approximants to f locally uniformly in
the region obtained from C"I by deleting the poles of r, under the condition
that the absolutely continuous part of the measure + is positive almost
everywhere in S(+). In the proof, ratio asymptotics of orthogonal polyno-
mials is strongly used. Later, E. A. Rakhmanov showed that convergence
does not hold for arbitrary positive measures + and general rational function
r (cf. [11]); this is due to the possible bad behaviour of the poles of the
approximants. Many results in rational approximation (for instance, see [7],
Lemma 1, and [8]) point out that the key ingredient to prove convergence
is to maintain the poles of the approximants under control. If the coefficients
of r are required to be real then all of the poles of the rational approximants,
except for a number independent of the order of the approximants, are in I.
This fact was used by Rakhmanov to obtain the convergence of the sequence
of Pade� approximants to the function f without any restriction on the
measure + (see [11]) when the coefficients of r are real.

The aim of this paper is to extend this work of Rakhmanov to the case
of multipoint Pade� -type approximants.

2. DEFINITIONS AND MAIN RESULTS

As above, let + be a finite positive Borel measure whose support, denoted
by S(+), is a compact subset of the real line R and contains infinitely many
points. Otherwise, the Markov function is a rational function. Set +̂(z)=
� (z&x)&1 d+(x). Let I be the convex hull of S(+). Let r be a rational func-
tion with real coefficients whose poles lie in C"I and r(�)=0. The set of
poles of r will be denoted by P. Set

f (z)=+̂(z)+r(z), z # C� "(S(+) _ P); r(z)=
sd (z)
td (z)

,

where deg sd�d&1, deg td=d. We also assume that sd and td have no
common factors.

Let [Ln], n # N, be a sequence of monic polynomials whose zeros lie in
I. This condition may be replaced by the slightly weaker one that all the
limit points of the zeros of Ln are in I. Let us assume that deg Ln=k(n)�n
and n&k(n)>2d. Let us fix another family of monic polynomials

wn(z)= `
2n

i=1

(z&wn, i),
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whose zeros are contained in a compact set L/C� "(I _ P) and lie sym-
metrically with respect to the real line, counting multiplicities. In case that
for some i, wn, i=�, the corresponding factor must be omitted. Without
loss of generality we may assume that wn and td are positive on S(+).

It is easy to verify, keeping in mind the definitions above, that for each
n # N there exists a unique rational function 6n( f )= pn �(qnL2

n), where pn

and qn satisfy:

v deg qn�n&k(n), deg pn�n+k(n)&1, and qn �0.

v qnL2
n f &pn �wn # H(C"(S(+) _ P)), where H(A) denotes the set of

all holomorphic functions defined on the set A/C� .
v (qnL2

n f&pn �wn)(z)=O(1�zn&k(n)+1), z � �.

6n( f ) is the multipoint Pade� -type approximant of f with preassigned
poles at the zeros of the polynomial L2

n , which interpolates the function f
at the zeros of the polynomial wn .

Let \n and \ be finite Borel measure son C� . By \n
*� \, n � �, we

denote the weak* convergence of \n to \ as n tends to infinity. This means
that for every continuous function f on C�

lim
n � � | f (x) d\n(x)=| f (x) d\(x).

For a given polynomial T, we denote by 4T the normalized zero counting
measure of T. That is

4T=
1

deg T
:

!: T(!)=0

$! .

The sum is taken over all the zeros of T and $! denotes the Dirac measure
concentrated at !.

In the following, for each n, it is considered that deg wn=2n, assigning
to these polynomials 2n&deg wn ``zeros'' at infinity in case that deg wn<2n.

It is said that the sequence of polynomials [wn]n # N has the measure & as
its asymptotic zero distribution if

4wn
*� &, n � �.

Let [.n]n # N be a sequence of functions defined on a domain D. We will
say that the sequence [.n]n # N converges in capacity to the function . on
compact subsets of D if for each compact subset C of D and for each =>0,
we have

lim
n � �

cap[z # C : |.n(z)&.(z)|>=]=0,

where cap( } ) stands for the logarithmic capacity.
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Let K be a compact subset of the real line R with cap(K)>0; we will say
that K is regular if the domain C� "K is regular with respect to the Dirichlet
problem.

Denote 0=C� "S(+) and let { be a positive measure supported on 0. The
Green potential of the measure { in 0 is the function G0({; } ) defined by

G0({; z)=| g0(z; `) d{(`), z # 0,

where g0(z; `) is the (generalized) Green function of 0 with singularity at
the point `.

Let f be a bounded function defined on K. Set & f &K=sup [ | f (z)|: z # K].
Finally, let us introduce the main sufficient condition to prove the theorem
below. Set w(z)=exp(&� log |z&t| d&(t)). We will require

lim sup
n � �

&wk(n)Ln&1�k(n)
S(+) �exp(&Fw), (1)

where Fw is the modified Robin constant for w (see Section 3.2 for details
and Section 5 for remarks about this condition). The limit above relates to
the behaviour of the zeros of the polynomials Ln on S(+).

We are ready for

Theorem 2.1. Suppose that the sequence of polynomials [wn]n # N has &
as its asymptotic zero distribution. Let cap(S(+))>0. If either k(n)=o(n) or
(1) takes place, then

1. For all sufficiently large n, deg qn=n&k(n); for such n the number
of poles of 6n( f ) in C� "I equals the number of poles of r; and the poles of
6n( f ) in C� "I tend, as n � �, to the poles of r (in such a way that each pole
of r ``attracts'' exactly a number of poles equal to its order).

2. On each compact subset K of C� "(I _ P), we have

lim sup
n � �

& f&6n( f )&1�2n
K �&exp[&G0(&; } )]&K .

The combination of 1 and 2 indicates that 6n( f ) converges to f uniformly
on compact subsets of C� "I in the chordal metric. Since it is known that
&exp[&G0(&; } )]&K<1, we obtain geometric rate of convergence of the
multipoint Pade� -type approximants to the function f.

In particular, if f =+̂, we obtain
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Corollary 2.1. Suppose that the sequence of polynomials [wn]n # N has
& as its asymptotic zero distribution. Let cap(S(+))>0. If either k(n)=o(n)
or (1) takes place then, on each compact subset K of C� "I, we have

lim sup
n � �

&+̂&6n(+̂)&1�2n
K �&exp[&G0(&; } )]&K .

This last result is closely related to those that appear in [3] or [5],
though the methods are somewhat different. We will discuss their connec-
tion later on.

To conclude this section, we give, for the sake of clarity, a list of the
main symbols and notation used in the paper.

+ A finite positive Borel measure

S(+) The support of +, a compact subset of R

I The convex hull of S(+)

+̂(z) � d+(x)�(z&x), the Markov function of +
0 C� "S(+)

r=sd �td A rational function with real coefficients

d Degree of td

P Set of poles of r
f =+̂+r A Markov-type meromorphic function

[Ln]n # N A sequence of monic polynomials whose zeros
lie on I

L A compact subset of C� "(I _ P)

[wn]n # N A sequence of monic polynomials whose zeros
lie on L

6n( f )= pn �(qn L2
n) The multipoint Pade� -type approximant of f

4T : The normalized zero counting measure of T
g0(z, `) The Green function of 0
& A probability measure supported on L

G0(&; } ) The Green potential of & in 0
cap( } ) The logarithmic capacity

P({; z) &� log |z&`| d{(`), the potential of the
measure {

w(z) exp P(&; z)

Fw The equilibrium constant associated with w
+w The equilibrium measure associated with w
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3. AUXILIARY RESULTS

3.1. Some Lemmas
In the sequel, we maintain the notations introduced above. From the

definition of multipoint Pade� -type approximant it is easy to prove (cf. [4],
Lemma 1 or [6], Section 2.3).

Lemma 3.1. We have

| x jqn(x)
td (x) L2

n(x)
wn(x)

d+(x)=0, j=0, 1, ..., n&k(n)&d&1 (2)

and

f (z)=6n( f )(z)=
wn(z)

(tdqn L2
nh)(z) |

(tdqnL2
nh)(x)

wn(x)(z&x)
d+(x), (3)

where h is any polynomial of degree less than or equal to n&k(n)&d and
z belongs to C� "(S(+) _ P).

From now on, we will represent the polynomials wn in the following
form. For each n # N, put wn=unvn , where

un(z)= `
2k(n)+4d

i=1

(z&un, i), vn(z)= `
2n&2k(n)&2d

j=1

(z&vn, j),

are such that their zeros lie (in each family) symmetrically with respect to
the real line, counting multiplicities. In case that for some i or j, un, i=�
or vn, j=�, the corresponding factor must be omitted. Without loss of
generality we may assume that un and vn are positive on S(+). We wish to
stress that Lemmas 3.2 to 3.4 hold true for any such decomposition of wn .
In the proof of Theorem 2.1, we select un and vn conveniently according to
Lemma 3.5.

As a consequence of (2), the polynomial qn has at least n&k(n)&d
changes of sign on I (cf. [15], Section 3.3). Then, qn can be represented in
the form qn=qn, 1qn, 2 , where deg qn, 1�n&k(n)&d and the zeros [xn, i],
i=1, ..., n$ of qn, 1 are simple and belong to I. The polynomial qn, 2 does not
change sign on I; and deg qn, 2�d. Set

pn, 1(z)=|
qn, 1(z) vn(x)&qn, 1(x) vn(z)

(z&x) vn(x)
d+n(x),

d+n(x)=
td qn, 2L2

n

un
(x) d+(x).
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Lemma 3.2. We have

(tdqn, 2L2
n)( f &6n( f ))(z)=un(z) \+̂n(z)&

pn, 1

qn, 1

(z)+ , z # C� "I, (4)

pn, 1

qn, 1

(z)= :
n$

i=1

*n, i

z&xn, i

,

(6)

*n, i=|
qn, 1(x) vn(xn, i)

q$n, 1(xn, i)(x&xn, i)
d+n(x)
vn(x)

.

Proof. From the definition of pn, 1 , we obtain

pn, 1(z)=qn, 1(z) +̂n(z)&vn(z) |
qn, 1(x)

(z&x) vn(x)
d+n(x),

or, in an equivalent manner

+̂n(z)&
pn, 1

qn, 1

(z)=
vn(z)

qn, 1(z) |
qn, 1(x)

(z&x) vn(x)
d+n(x). (6)

Using Hermite's formula (3) with h#1, we also have

vn(z)
qn, 1(z) |

qn, 1(x)
(z&x) vn(x)

d+n(x)=
vn(z)

qn, 1(z) |
(td qnL2

n)(x)
(unvn)(x)(z&x)

d+(x)

=
(tdqn, 2L2

n)(z)
un(z)

( f &6n( f ))(z). (7)

Now, (6) and (7) together give (4). Furthermore

pn, 1

qn, 1

(z)=+̂n(z)&
vn(z)

qn, 1(z) |
(tdqn L2

n)(x)
(un vn)(x)(z&x)

d+(x)=o \1
z+ ,

due to the orthogonality relations (2) and taking account of the possible
degrees of the polynomials vn and qn, 1 . Thus deg pn, 1<deg qn, 1 and,
therefore,

pn, 1

qn, 1

(z)= :
n$

i=1

*n, i

z&xn, i
with *n, i= lim

z � xn, i

(z&xn, i)
pn, 1

qn, 1

(z).

If we now use the integral formula that defines pn, 1 , we obtain (5) and the
proof of the lemma is over. K
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Consider the following linear functional 4n . If . is a function defined
on I, then

4n(.)= :
n$

i=1

*n, i
.(xn, i)
vn(xn, i)

.

The next lemma is an analog of the Gauss�Jacobi quadrature formula.

Lemma 3.3. For every polynomial P with deg P<2n&2k(n)&2d,

| P(x)
d+n(x)
vn(x)

=4n(P). (8)

Proof. Let L, deg L<n$, be the Lagrange polynomial which inter-
polates a given polynomial P, deg P<2n&2k(n)&2d, at the points xn, i ,
i=1, ..., n$. We have P=L+qn, 1 T, where T is a polynomial of degree less
than n&k(n)&d. Integrating the equation P=L+qn, 1T, using (2) and
(5), we obtain

| P(x)
d+n(x)
vn(x)

= :
n$

i=1

P(xn, i) |
qn, 1(x)

q$n, 1(xn, i)(x&xn, i)
d+n(x)
vn(x)

=4n(P),

and the proof is complete. K

From this last result immediately follows

Lemma 3.4. The number of positive coefficients *n, i in (5) is at least
n&k(n)&d.

Proof. Let N be the number of positive *n, i (for a given n). Put P(z)=
>+ (z&xn, i)

2, where >+ denotes the product over all indices i for which
*n, i>0. If deg P=2N<2n&2k(n)&2d, formula (8) is applicable to P, and
we obtain a contradiction (the left-hand side of the formula is positive and
the right-hand one is nonpositive). Consequently N>n&k(n)&d, which
proves the lemma. K

The next lemma shows that the polynomials un and vn may be chosen so
that the sequences inherit the asymptotic zero distribution of [wn]n # N .
Though it may be stated in more general terms we restrict our attention to
the case needed for the proof of Theorem 2.1.
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Lemma 3.5. Suppose that the sequence of polynomials [wn]n # N with
deg wn=n, has the measure & as its asymptotic zero distribution and
S(&)/C. Let k(n) # N be such that k(n)�n. If limn � � k(n)=� and
limn � � n&k(n)=� then, for each n # N, there exists polynomials un and vn

such that wn=unvn , deg un=k(n), and

4un
*� &, n � �, 4vn

*� &, n � �.

Proof. Fix a closed square Q such that the support of & is contained in
Q. We may assume, without loss of generality, that all the zeros of the
polynomials wn belong to Q. For each positive integer n, divide Q into
m(n) disjoint squares (not necessarily closed): Q=�m(n)

j=1 Qn
j . We suppose

that m(n)=o(k(n)), m(n)=o(n&k(n)), and limn � � m(n)=� verifying

lim
n � �

( max
j=l, ..., m(n)

|Qn
j | )=0, where |A|= max

[a, b # A]
|a&b|.

Now, we construct un in the following way. In each square Qn
j we choose

[k(n) 4Wn
(Qn

j )] zeros of wn , where [ } ] denotes the integer part. These
zeros are the zeros of un , the rest of them define vn . These polynomials un

and vn do not have the degrees announced in the statement of the lemma.
We correct this later. Notice that the difference in degrees is, at most, m(n)
for each of them.

The polynomial un satisfies

k(n) 4wn
(Qn

j )&1�(un
(Qn

j )

�k(n) 4wn
(Qn

j ), j=1, ..., m(n), (9)

where (un
stands for the measure which has at each zero of un a mass equal

to the multiplicity of the zero. From (9) we obtain

4wn
(Q)&

m(n)
k(n)

�
(un

(Q)

k(n)
�4wn

(Q).

Analogously

4wn
(Q)�

(vn
(Q)

n&k(n)
�4wn

(Q)+
m(n)

n&k(n)
.

Let h be a continuous function on C� . We may suppose that h is a real,
positive function. Denote by M the maximum of h on Q and by M n

j and
mn

j the maximum and the minimum, respectively, of h on the closure of Qn
j .
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Due to uniform continuity we may suppose that M n
j &mn

j �$n , where
limn � � $n=0. By (9), we have

} |Qj
n

h d4wn
&|

Qj
n
h 4un }�M n

j 4wn
(Qn

j )&mn
j 4un

(Qn
j )

�(M n
j &mn

j ) 4wn
(Qn

j )+
mn

j

k(n)
.

Therefore,

} |Q
h d4wn

&|
Q

h d4un }� :
m(n)

j=1
} |Qj

n
h d4wn

&|
Qj

n
h d4un }

� :
m(n)

j=1
_(M n

j &mn
j ) 4wn

(W n
j )+

mn
j

k(n)&
�$n+M

m(n)
k(n)

,

where the right-hand side tends to zero as n tends to infinity. The weak star
convergence of 4vn

is proved in a similar way.
In order to correct the degrees of un and vn according to the statement,

we must only transmit from one of these polynomials to the other at most
m(n) zeros. Since m(n)=o(k(n)) and m(n)=o(n&k(n)) the new polyno-
mials preserve the weak star limit of the previous ones. The proof is
complete. K

The next lemma was proved by Gonchar in [7].

Lemma 3.6. Suppose that the sequence [.n] of functions defined on
the domain D/C converges in capacity to a function . on compact subsets
of D. Then the following assertions hold true:

1. If the functions .n , n # N are holomorphic in D, then the sequence
[.n] converges uniformly on compact subsets of D and . is holomorphic in
D (more precisely, it is equal to a holomorphic function in D except on a set
of capacity zero).

2. If each of the functions .n is meromorphic in D and has no more
than k<+� poles in this domain, then the limit function . is also mero-
morphic and has no more than k poles in D.

3. If each function .n is meromorphic and has no more than k<+�
poles in D and the function . is meromorphic and has exactly k poles in D,
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then all .n , n�N, also have k poles in D; the poles of .n tend to the poles
z1 , ..., zk of . (taking account of their orders) and the sequence [.n] tends
to . uniformly on compact subsets of the domain D$=D"[z1 , ..., zk].

3.2. Potential Theory
Let w be a positive continuous function on S(+). Set g(z)=&log w(z). It

is well known (see [14], Sections I.1 and I.3) that among all probability
measures _ with support in S(+) there exists a unique probability measure
+w with support in S(+), called the extremal or equilibrium measure
associated with w, minimizing the weighted energy

Iw(_)=|| \log
1

|z&t|
+ g(z)+ g(t)+ d_(z) d_(t).

Let P(+w ; z)=&� log |z&t| d+w(t) be the potential of this extremal
measure and Sw /S(+) its support. Under these conditions there exists a
constant Fw , called the equilibrium constant or modified Robin constant,
such that

P(+w ; z)+ g(z)�Fw , z # S(+)"E, cap(E)=0,
(10)

P(+w ; z)+ g(z)�Fw , z # Sw .

Due to (10), +w is also called the equilibrium measure in the presence of
the external field g. The constant Fw is determined by

Fw=Iw(+w)&| g(t) d+w(t).

If [wn]n # N has asymptotic zero distribution &, it is easy to see that
(wn)&1�deg wn uniformly converges to eP(&; } ) on S(+), where P(&; } ) is the
potential of the probability measure &. If we take g(z)=&P(&; } ), since
the support of & is contained in L/C� "(I _ P), it is well known that +w is
the balayage of & onto S(+) and Sw coincides with S(+) minus a set of
capacity zero (for instance, see [14], Chapter IV, Theorem 1.10). Therefore,

P(+w ; z)&P(&; z)=Fw , z # S(+)"E, cap(E)=0. (11)

It is also known (see Theorem 5.1, Chapter II, in [14]) that

G0(&; z)=Fw&P(+w ; z)+P(&; z), z # 0=C� "S(+). (12)

Recall that G0(&; } ) is the Green potential of the measure & in 0. The next
lemma tells us that Green potentials behave properly with respect to an
increasing union of domains.
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Lemma 3.7. Let [Kn]n # N be a sequence of compact sets contained in R
such that Kn+1 /Kn for each n # N and cap(��

n=1 Kn)>0. Let & be a
positive measure with compact support in C"K1 . Then

lim
n � �

e&GDn
(&; z)=e&GD(&; z),

uniformly on compact subsets of D, where Dn=C"Kn and D=��
n=1 Dn .

Proof. For each n # N, denote Fw, n and +w, n the Robin constant and
the equilibrium measure, respectively, associated with w=eP(&; } ); where we
consider the function w restricted to the set Kn . And let Fw and +w be the
Robin constant and the equilibrium measure, respectively, associated with
the same weight w restricted to the set ��

n=1 Kn . In the situation of this
lemma, it is known (cf. Theorems 6.2 and 6.5, Chapter I, in [14]) that

lim
n � �

Fw, n=Fw and +w, n
*� +w , n � �.

Therefore, if we denote Fw, n&P(+w, n ; } ) by hn , it is obtained that the
functions hn converge to Fw&P(+w ; } ) uniformly on compact subsets of D.
Hence,

lim
n � �

e&hn(z)=e&Fw+P(+w ; z),

uniformly on compact subsets of D, since the functions hn are uniformly
bounded on such subsets.

On the other hand, the function &P(&; } ) is a subharmonic function on
D (in fact, on all C) so, for any compact subset C of D, &P(&; } ) attains
its maximum: say MC . Then, e&P(&; z) # [0, eMC] \z # C, which implies,
using (12), that

lim
n � �

e&GDn
(&; z)= lim

n � �
e&P(&; z)e&hn(z)

=e&P(&; z)e&Fw+P(+w; z)=e&GD(&; z),

uniformly on C. K

4. PROOF OF THE THEOREM

In the sequel, without loss of generality, we may assume that L is a
compact subset of C"I. The reduction to this case may be achieved by
means of a Mo� bius transformation of the variable in the initial problem,
which transforms S(+) into another compact subset of R and L/C� "I into
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a compact subset contained in C"I� , where I� is the image of I by the Mo� bius
transformation. This assumption implies, in particular, that for each n the
degree of wn is really 2n, and liberates our arguments from the special treat-
ment which otherwise we would have to give to neighbourhoods of infinity.

The proof is divided into three parts. In the first we obtain a general
estimate of the size of f &6n( f ) on compact subsets of C"I. Here we must
deal with two problems; namely, the poles of 6n( f ) (zeros of qn, 2) which
may lie in C"I (and in fact some do), and the zeros of qn, 1 which have
negative coefficients *n, i . Fortunately the number of points with these
undesired properties does not depend on n as n tends to infinity. To handle
these problems we follow arguments employed in the proof of the Theorem
in [10]. The general estimate obtained in the first part allows us to give
proper bounds in part two using techniques from potential theory. The
bounds of part two provide convergence in capacity of 6n( f ) to f on
compact subsets of C"I and with the aid of Gonchar's Lemma we conclude
the proof in part three.

1. Let wn=unvn be any decomposition of wn as defined in the beginning
of Section 3.1. Let \n(z)=>& (z&xn, i)

2, where >& denotes the product
over the indices i for which *n, i<0. From Lemma 3.4 it follows that deg \n

�2d. Let us consider the functions

8n(z)=
\n qn, 2 tdL2

n

un
(z)( f &6n( f ))(z), z # C� "I.

For every z # C� "I, from (4) and (5), we obtain

8n(z)=\n(z) _+̂n(z)&
pn, 1

qn, 1

(z)&
=\n(z) _+̂n(z)&4n \vn(x)

z&x+& .

Denote

Kn(x; z)=
\n(z)&\n(x)
(z&x) \n(z)

;

then, Kn is a polynomial (in x) of degree less than 2d. We have

1
z&x

&Kn(x; z)=
\n(x)
\n(z)

1
z&x

.
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From the preceding representation of 8n and Lemma 3.3, we obtain (recall
that n&k(n)>2d)

8n(z)=\n(z) | \ 1
z&x

&Kn(x; z)+ d+n(x)

&\n(z) 4n \vn(x)
z&x

&vn(x) Kn(x; z)+
=| \n(x)

d+n(x)
z&x

&4n \\n(x)
vn(x)
z&x+ , z # C� "I.

Let K be an arbitrary compact subset of C� "I. On one hand

} | \n(x)
d+n(x)
z&x }�M(K) "L2

n

un "S(+)

&qn, 2 td &S(+) , z # K, (13)

where M(K) denotes a constant which may depend on K but not on n. In
the following, in each appearance, M(K) may denote a different constant
with the same characteristics.

On the other hand, using Lemma 3.3, we obtain (notice that \n(xn, i)=0
whenever *n, i<0)

}4n \\n(x)
vn(x)
z&x+}= } :

n$

i=1

*n, i
\n(xn, i)
z&xn, i }

� :
n$

i=1

*n, i
\n(xn, i)
|z&xn, i |

�M(K) :
n$

i=1

*n, i\n(xn, i)

=M(K) | \n(x) d+n(x)

�M(K) "L2
n

un "S(+)

&qn, 2 td&S(+) , z # K. (14)

Therefore, by the use of (13) and (14), we obtain

|8n(z)|�M(K) "L2
n

un "S(+)

&qn, 2 td &S(+) , z # K, (15)

where K is an arbitrary compact subset of C� "I.
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2. Let [Km]m # N be a sequence of regular compact sets contained in
I such that Km+1 /Km and S(+)=��

m=1 Km . We may assume that each
Km is a finite union of intervals. Let us denote by +w, m and Fw, m the equi-
librium measure on the set Km and the modified Robin constant, respectively,
associated with the external field w(z)=exp P(&; z). Set 0m=C� "Km and let
G0m

(&; `) be the corresponding Green potential. Let m be an arbitrary
natural number but fixed. In view of (2), qn, 1 , n # N, has, at most, d+1
simple zeros in each connected component of I"S(+). In this way, qn, 1 may
be represented in the form qn, 1=q~ n, 1hn , where deg hn=an�A(m), n�N,
and q~ n, 1 has all its zeros in Km .

Now, let us consider the functions

Hn(z)=
8n(z) hn(z)

&u&1
n L2

n&S(+) &qn, 2 td&S(+) vn(z) \n(z)
, z # C� "Km .

From the definition of multipoint Pade� -type approximant it is easily seen
that

Hn # H(C� "Km) and Hn=O \ 1
z2n&2k(n)&2d&an+1+ , z � �. (16)

We also know, due to (15), that

|Hn(z) vn(z)|�M(K), z # K, (17)

where K is any given compact subset of C"I, since hn has all its zeros in
I and its degree is bounded by A(m).

Notice that

hn(z)[ f (z)&6n( f )(z)]

="L2
n

un "S(+)

un(z)
L2

n(z)
Hn(z) vn(z)

&qn, 2 td &S(+)

qn, 2(z) td (z)
, (18)

where z belongs to C"I. Our next goal is to prove that the sequence

{"L2
n

un "S(+)

un(z)
L2

n(z)
Hn(z) vn(z)=n # N

(19)

converges to zero with a geometric rate uniformly on compact subsets of C"I.
To this end, we estimate separately the factors

Hn(z) vn(z) and "L2
n

un "S(+)

un(z)
L2

n(z)
.
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We start with the factors of the first kind. Let K be an arbitrary compact
subset of C"I. Set #==[` # C : exp G0m

(&; `)=1+=], where = is a positive
constant sufficiently small so that K and L lie in the unbounded component
of C"#= . In view of (16), for each n, the function

|Hn(z)| [exp(Fw, m&P(+w, m ; z))]2n&2k(n)&2d&an

is subharmonic in C� "Km . Taking (17) into account, we obtain that

|Hn(z) vn(z)| [exp(Fw, m&P(+w, m ; z))]2n&2k(n)&2d&an

�M(#=)[exp(Fw, m&P(+w, m ; z))]2n&2k(n)&2d&an

�M(#=)[exp(Fw, m&P(+w, m ; z))]2n&2k(n)&4d, z # #= ,

where M(#=) has the same characteristics as M(K). Or equivalently, using (12)

|Hn(z)| [exp(Fw, m&P(+w, m ; z))]2n&2k(n)&4d&an

�
M(#=)
|vn(z)|

[exp(G0m
(&; z))]2n&2k(n)&4d

[exp(P(&; z))]2n&2k(n)&4d , z # #= . (20)

Now, we suppose that limn � � n&k(n)=� and limn � � k(n)=� (the
bounded cases are easier and are considered at the end of this section). We
choose un and vn , deg vn=2n&2k(n)&4d, with the additional property of
having & as their asymptotic zero distribution as in Lemma 3.5. Since the
degree of all the polynomials involved is even this choice may be done in
such a way that the zeros of un and vn lie symmetrically with respect to
the real line. From the fact that & is the asymptotic zero distribution of
[vn]n # N , we obtain

lim
n � �

|vn(z)|1�deg vn=e&P(&; z), (21)

uniformly on compact subsets of C"L, and using the Principle of Descent
(see [14], Chapter 1, Theorem 6.8), we have that

lim sup
n � �

|vn(z)| 1�deg vn�e&P(&; z), (22)

uniformly on compact subsets of C. Now, for sufficiently large n # N, (20)
and (21) together give

|Hn(z)| [exp(Fw, m&P(+w, m ; z))]2n&2k(n)&4d&an

�M(#=) \1+=
1&=+

2n&2k(n)&4d

, z # #= .
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It follows from the Maximum Principle for subharmonic functions that the
same inequality holds for any z in K. Hence, using (22), we obtain that

|Hn(z) vn(z)|=|Hn(z)| [exp(Fw, m&P(+w, m ; z))]2n&2k(n)&4d&an

_|vn(z)| [exp(&Fw, m+P(+w, m ; z))]2n&2k(n)&4d&an

�M(#=) |vn(z)| \1+=
1&=+

2n&2k(n)&4d

_[exp(&G0m
(&; z)) exp(P(&; z))]2n&2k(n)&4d

�M(#=) \(1+=)2

1&= +
2n&2k(n)&4d

_[exp(&G0m
(&; z))]2n&2k(n)&4d, z # K; (23)

for sufficiently large n # N.
On the other hand, (recall that w(z)=exp(P(&; z)))

"L2
n

un "S(+)

="L2
nw2k(n)+4d

un w2k(n)+4d "S(+)

�C
&L2

nw2k(n)&S(+)

min` # S(+)[un(`) w2k(n)+4d (`)]
,

where C is an absolute constant which may be different in each appearance.
Therefore, taking account of (1) and (21) relative to un , we have that

"L2
n

un "S(+)

�C \1+=
1&=+

2k(n)

[exp(&Fw)]2k(n)+4d, (24)

for sufficiently large n # N.
Condition (1) implies that (see [14], Chapter III, Theorem 4.2)

4Ln
*� +w , n � �,

which in turn implies that

lim
n � �

|Ln(z)|1�deg Ln=e&P(+w ; z),
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uniformly on compact subsets of C"S(+). Using this fact and (22) with un

instead of vn , we have that

|un(z)|
|L2

n(z)|
�M(K)

|un(z)| [exp(P(&; z))]2k(n)+4d

|L2
n(z)| [exp(P(+w ; z))]2k(n)

_[exp(P(+w ; z)&P(&; z))]2k(n)+4d

�M(K) \1+=
1&=+

2k(n)

[exp(P(+w ; z)&P(&; z))]2k(n)+4d,

z # K, (25)

for sufficiently large n # N. From (24) and (25), we obtain

"L2
n

un "S(+)

|un(z)|
|L2

n(z)|

�M(K) \1+=
1&=+

4k(n)

[exp(&G0(&; z))]2k(n)+4d

�M(K) \1+=
1&=+

4k(n)

[exp(&G0m
(&; z))]2k(n)+4d, z # K, (26)

for sufficiently large n # N.
Using (23) and (26), taking limits, and making = tend to zero it follows

that

lim sup
n � � ""L2

n

un "S(+)

un(z)
L2

n(z)
Hn(z) vn(z)"

1�2n

K

�&exp(&G0m
(&; } ))&K , (27)

for each compact subset K of C"I. From here it immediately follows that
the sequence (19) converges uniformly to zero, with geometric rate, on each
compact subset of C"I.

If n&k(n)�B, B # R, for all n # N, it is obvious that [un]n # N has & as
its asymptotic zero distribution. Then, we attain (27) by the use of (17) and
(26). Finally, we obtain (27) in the general case (regarding the size of
n&k(n)) passing to subsequences.

3. Following standard arguments, from (18) and (27), it is not dif-
ficult to prove convergence in capacity of the sequence 6n( f ) to f on
compact subsets of C"I (cf. proof of Theorem 1 in [11]). The poles of the
function 6n( f ) in C"I are the zeros of qn, 2 and their number does not
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exceed d. The number of poles of f in C"I is exactly equal to d, and part 1
of the statement of Theorem 2.1 now follows from Lemma 3.6. Therefore,
on every compact set K/C"(I _ P) the function qn, 2 td can be uniformly
bounded below for sufficiently large n. Thus, from (18) and (27), we have
that

lim sup
n � �

& f&6n( f )&1�2n
K �&exp(&G0m

(&; } ))&K , (28)

where K is any compact subset of C"(I _ P) and m is an arbitrary natural
number. Therefore, with the aid of Lemma 3.7, we obtain part 2 of the
statement of Theorem 2.1 for compact subsets of C"(I _ P). Since f &6n( f )
is holomorphic in a neighbourhood of z=� and takes the value 0 there, we
have, by the Maximum Principle, that (28) holds true for arbitrary compact
subsets in C� "(I _ P), which completes the proof if (1) takes place and
limn � � k(n)=�.

Now, we assume that k(n)=o(n). Let K be an arbitrary compact set of
C"I. Let :=minz # K, ` # I |z&`| and ;=maxz # S(+) ` # I |z&`|. If z # K and we
use (21) and (22) with un instead of vn , we have that

|un(z)|
|L2

n(z)| "
L2

n

un "S(+)

�
&L2

n&S(+)

|L2
n(z)|

|un(z)|
min` # S(+) |un(`)|

�\;
:+

2k(n)

\ &exp(&P(&; } ))&K+=
min` # S(+) |exp(&P(&; `))|&=+

2k(n)+4d

,

for all sufficiently large n # N. Therefore, if k(n)=o(n), we obtain

lim sup
n � � "L2

n

un "
1�2n

S(+) "
un(z)
L2

n(z)"
1�2n

K
�1,

where K is any compact subset of C"I. Now, the proof is analogous to the
previous one using this last result, instead of (26).

Finally, if only condition (1) takes place we attain the result passing to
subsequences.

5. REMARKS

As we said above, condition (1) implies (assuming limn � � k(n)=�)
that

4Ln
*� +w , n � �.
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If the set S(+) is regular with respect to the Dirichlet problem in 0 both
conditions are equivalent (see Lemmas 3 and 4 in [5]) but, in general, the
reciprocal statement is not true. To see this, let us consider the set [&2, 2]
_ [3] and the Chebyshev polynomials Tn(z)=zn+ } } } for [&2, 2]. Let +
be the measure on [&2, 2] _ [3] which restricted to [&2, 2] equals the
Lebesgue measure and has mass 1 at z=3. We take un #vn #1, for all
n # N. The Chebyshev polynomials Tn verify

lim sup
n � �

&Tn&1�n
[&2, 2]�cap([&2, 2])=1. (29)

This fact is equivalent (see [2], Theorem 1) to

4Tn
*� +w , n � �, (30)

where d+w is the equilibrium measure of [&2, 2], which is the same
measure that the equilibrium measure of [&2, 2] _ [3], since both sets
differ in a set of capacity zero. In turn, any one of the conditions (29) and
(30) is equivalent to

lim
n � �

|Tn(z)| 1�n=exp(gC"[&2, 2](z; �)),

uniformly on compact subsets of C"[&2, 2]. In particular

lim
n � �

|Tn(3)| 1�n=exp(gC"[&2, 2](3; �))>1. (31)

On the other hand, condition (1), for the polynomials Tn , reads

lim sup
n � �

&Tn&1�n
[&2, 2] _ [3]�cap([&2, 2] _ [3])=1,

which contradicts (31). However, it is easy, in this case, to construct a
family of polynomials that satisfies (1). It is sufficient to take Ln(z)=
Tn(z)(z&3). In general, there always exist families of polynomials verifying
(1), for instance, Chebyshev and Fekete (weighted) polynomials (see [14],
Chapter 3).

Regarding the relationship between Corollary 2.1 and Theorem 2 in [5],
neither of the results is contained in the other. In contrast with [5], we
do not require that either S(+) be regular or that the measure + be regular
(see [5] for definition). However, our condition on the polynomials Ln is
stronger and we do not obtain the exact rate of convergence.

If, in Corollary 2.1, the polynomials wn are taken to be equal to 1, we
may compare this result and Theorem 2$ in [3]. In case that S(+) is a regular
compact set, both results are equivalent; otherwise, our requirement (1) is
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stronger than the one that appears in [3], but we let limn � � k(n)�n be
equal to 1, which is not allowed in [3]. The case limn � � k(n)�n=1 corre-
sponds to the case when ``almost'' all the poles of 6n(+̂) are fixed. In this
situation the construction of the Pade� -type approximants has the least
computational cost since the zeros of Ln are given.
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